Задания
Версия для печати и копирования в MS Word

Най­ди­те наи­мень­шее целое ре­ше­ние не­ра­вен­ства

2 в сте­пе­ни левая круг­лая скоб­ка x минус 15 пра­вая круг­лая скоб­ка умно­жить на 5 в сте­пе­ни левая круг­лая скоб­ка x минус 13 пра­вая круг­лая скоб­ка минус 2 в сте­пе­ни левая круг­лая скоб­ка x минус 11 пра­вая круг­лая скоб­ка умно­жить на 5 в сте­пе­ни левая круг­лая скоб­ка x минус 15 пра­вая круг­лая скоб­ка боль­ше 9000.

Спрятать решение

Ре­ше­ние.

Пре­об­ра­зу­ем не­ра­вен­ство

2 в сте­пе­ни левая круг­лая скоб­ка x минус 15 пра­вая круг­лая скоб­ка умно­жить на 5 в сте­пе­ни левая круг­лая скоб­ка x минус 13 пра­вая круг­лая скоб­ка минус 2 в сте­пе­ни левая круг­лая скоб­ка x минус 11 пра­вая круг­лая скоб­ка умно­жить на 5 в сте­пе­ни левая круг­лая скоб­ка x минус 15 пра­вая круг­лая скоб­ка боль­ше 9000 рав­но­силь­но 2 в сте­пе­ни левая круг­лая скоб­ка x минус 15 пра­вая круг­лая скоб­ка умно­жить на 5 в сте­пе­ни левая круг­лая скоб­ка x минус 15 пра­вая круг­лая скоб­ка умно­жить на 5 в квад­ра­те минус 2 в сте­пе­ни левая круг­лая скоб­ка x минус 15 пра­вая круг­лая скоб­ка умно­жить на 2 в сте­пе­ни 4 умно­жить на 5 в сте­пе­ни левая круг­лая скоб­ка x минус 15 пра­вая круг­лая скоб­ка боль­ше 9000 рав­но­силь­но
 рав­но­силь­но 2 в сте­пе­ни левая круг­лая скоб­ка x минус 15 пра­вая круг­лая скоб­ка умно­жить на 5 в сте­пе­ни левая круг­лая скоб­ка x минус 15 пра­вая круг­лая скоб­ка левая круг­лая скоб­ка 25 минус 16 пра­вая круг­лая скоб­ка боль­ше 9000 рав­но­силь­но 10 в сте­пе­ни левая круг­лая скоб­ка x минус 15 пра­вая круг­лая скоб­ка умно­жить на 9 боль­ше 9000 рав­но­силь­но
 рав­но­силь­но 10 в сте­пе­ни левая круг­лая скоб­ка x минус 15 пра­вая круг­лая скоб­ка боль­ше 1000 рав­но­силь­но 10 в сте­пе­ни левая круг­лая скоб­ка x минус 15 пра­вая круг­лая скоб­ка боль­ше 10 в кубе рав­но­силь­но x минус 15 боль­ше 3 рав­но­силь­но x боль­ше 18.

Наи­мень­шее под­хо­дя­щее целое x это 19.

 

Ответ: 19.


Аналоги к заданию № 1964: 2028 Все

Источник: Цен­тра­ли­зо­ван­ное те­сти­ро­ва­ние по ма­те­ма­ти­ке, 2022
Сложность: III
Классификатор алгебры: 4\.2\. Не­ра­вен­ства пер­вой и вто­рой сте­пе­ни от­но­си­тель­но по­ка­за­тель­ных функ­ций